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In this paper we consider numerical solutions to a kinetic equation for 
the dispersion of small particles in a turbulent flow, The solution 
represents the probability density that a particle has a certain velocity 
and position at a given time. These solutions are based on a 
mixed finite-difference spectral method. Computational results are 
presented. 0 1992 Academic Press. Inc. 

1. INTRODUCTION 

Predicting the dispersion and deposition of small par- 
ticles suspended in a turbulent flow is a problem of great 
practical importance both industrially and environmentally 
and has received considerable attention in the past (see, e.g., 
[ 11). One of the authors (Reeks [2, 33) recently derived a 
transport equation for the particle phase space probability 
density w(v, y, t) for a particle with velocity v and position 
y at time t. This “kinetic” equation is in fact the analogue of 
the Maxwell-Boltzmann equation of classical kinetic theory 
(CKT); that is, it can be used in exactly the same way as the 
Maxwell-Boltzmann equation is used in CKT to construct 
the continuum equations and constitutive relations of the 
dispersed particle phase. 

Finding a suitable kinetic equation hinges upon finding a 
suitable closed expression for the net acceleration of a par- 
ticle resulting from its interaction with random turbulent 
eddies (inter-particle collisions are ignored). If the particle 
equation of motion is given by a Langevin equation then 
this is equivalent to finding a closed expression for the term 
( Wf ), where f is the random fluctuating aerodynamic 
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force, W is the instantaneous phase space density, and ( ) 
is a time or ensemble average. If f(t) is white noise, that is, 
its time scale is much shorter than that of particle motion, 
the kinetic equation reduces to the classical Fokker-Planck 
equation (see Chandrasekhar [4] and Buyevich [ 5,6]) 
with 

(Wfb-p$, (1.1) 

where R’ is a tensor whose components are in general 
functions of y and t with the diagonal components 
specifically positive. However, Reeks [2] was able to find 
a more general form for this “diffusion current” not 
restricted to white noise, by constructing expressions which 
preserved invariance to a random Galilean transformation 
(RGT) [7]. He showed that in general this term could be 
expressed as a series expansion involving successively higher 
order velocity and spatial derivatives of w(v, y, t) and 
cumulants of f(t) along a particle trajectory. Significantly, 
truncation after the first term in the expansion corre- 
sponded to a realisable process in which f(t) is a Gaussian 
random process. In this case 

(Wf>= p.g+q, ( (1.2) 

where p and A are tensors whose components are given 
functions of y and t. Using this form, the corresponding 
kinetic equation reproduces the correct equation of state 
[8] for the particle and preserves RGT invariance. Indeed 

the existence of the spatial gradient term can be traced 
directly to satisfying this latter requirement. For the case 
when f(t) is white noise the more general form reduces to 
that in Eq. (1.2) with X effectively zero. 
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We wish in this paper to consider ways of solving this 
kinetic equation for generic flows in which the dispersed 
phase is contained within some finite volume. Solutions of 
this sort will be particularly useful in several ways: 

l in constructing constitutive relations; 

l considering situations when simple gradient diffusion 
is inadequate, e.g., deposition of particles in turbulent 
boundary layers (see, e.g., [9]): in this case a solution can 
only be found by solving the kinetic equation explicitly; 

l considering the influence of absorbing or partially 
reflecting boundaries: boundary conditions involving 
particles impacting and adhering at surfaces are in fact most 
naturally prescribed using this formulation (see, e.g., [2]). 

As an illustration we consider here the one-dimensional 
form of the kinetic equation appropriate for dispersion of 
particles in inhomogeneous turbulence. For an axisym- 
metric pipe in which the mean carrier flow, U, is uniform and 
axial (see Fig. 1) and in which the distribution of particles 
exhibits no spatial or velocity gradients in the axial direc- 
tion the governing equation of the problem will be of the 
form (see [2]) 

aw aw --v-+/3 5- ay ~+$;+A$], (1.3) 

where p and Jb are given functions of y and t and j-’ is a 
constant representing the particle response time. 

In this work, we shall consider Eq. (1.3) with simple 
Dirichlet boundary conditions: 

w( - Y, 0, t) = w,(v, t), v>o, t30; (1.4) 

4 y, 0, t) = W,(% f)> v < 0, t > 0. (1.5) 

Initial conditions are given by 

W(Y, u, 0) = WdY, v), y E ( - K n 

tiE(-co, +a). (1.6) 

Partial differential equations are often solved numerically 
by finite-difference methods (FDMs). Unfortunately, there 
are two main difficulties in solving (1.3)-(1.6) by FDMs. 
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Y= 

FIG. 1. The structure of a simple pipe 
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First, due to the existence of the term a2w/av ay it is difficult 
to construct stable schemes for (1.3)-( 1.6) (one can refer to 
[lO-121 which consider FDMs for transport equations 
similar to (1.3) with J. = 0, i.e., without the mixed term). 
Second, the eigenvalues of the resulting matrix arising from 
the discretised finite-difference schemes have different signs 
making it difficult to cope with the one sided boundary 
conditions (1.4) and (1.5). From the above, it would appear 
to be extremely difficult to construct proper FDMs to solve 
problem (1.3))( 1.6). 

In recent years, there has been extensive activity in both 
the theory and application of spectral methods which have 
proved to be a powerful tool for obtaining numerical 
solutions of differential equations (see, e.g., [ 13-161). In 
solving stationary neutron problems (similar to problem 
(1.3t( 1.6), but without the mixed term and in a finite 
domain), a method refered to as the “spherical harmonic 
method” has been used successfully (see, e.g., [ 17-201). In 
this method the unknown function w( y, v, t) (1~1 < 1) is 
represented by an expansion of Legendre polynomials in v 
with coefficients depending on y and t. The method can be 
viewed as a certain type of spectral method for finite solu- 
tion domain. When the problem is posed on u E ( --co, cc ) 
(i.e., infinite domain) a variety of spectral techniques have 
been developed in recent years. These include the use of sine 
function, Hermite functions, and algebraically mapped 
Chebyshev polynomials and previous results for these 
techniques are summarized, for example, in Chapter 14 of 
Boyd [13]. Many researchers have noted that the close 
connection of Hermite polynomials to the physics makes 
them a natural choice of basis functions for many fields of 
science and engineering. Numerical applications include 
[21,22] and many problems in tropical meteorology and 
oceanography (see also [23, 241). In this paper we shall 
show that the spectral method with the use of the Hermite 
polynomials can produce very accurate numerical solutions 
for problem (1.3)-( 1.6) in the infinite solution domain. 

The remainder of the paper consists of three sections. 
Section 2 gives some series expansion results for the 
Hermite polynomials and Section 3 is devoted to the 
description of the spectral method used. The final section 
presents one numerical example for which the analytic 
solution is known. The numerical solutions of the problem 
using the spectral technique at various levels of truncation 
is compared with the analytic solution. 

2. SERIES EXPANSION 

Throughout this paper we shall assume that the given 
functions p = p( y, t) and 1* = A( y, t) are nonnegative and 
A(+ Y, t)=O. 

Since the solution interval of u in Eq. (1.3) is (-co, +co) 
and the initial functions often assume the form 
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p(y) exp( -a*~~), where p(y) is a given nonnegative Similarly, (2.1) and (2.6) yield 
function and N is a positive constant, it is natural to 
represent the unknown function w  by an expansion of the 
Hermite polynomials in u with coefficients depending on $ (uw)= - 5 wl=Fv-Z(Y> t).fnp2(Y, t) 

n=O 
y and t. Substitution of this expansion into the kinetic 
equation (1.3) leads to simultaneous partial differential + %r(YY f)fn(Y, t)l Rh4. (2.8) 

equations for the coefficients. Specifically, let 
From (2.1) and (2.4), we obtain 

W(Y> fJ> t) = ;og*fn(Y> t) 

x H,(au) exp( -a%*), 

P$=ir*P f 2&=-LT-*(Y, f) 
?I=0 

(2.1) 
xfn-*(Y, t) mu); 

where H, is the n th order Hermite polynomial, g, are given 
functions which are to be determined, and fn are unknown and from (2.1) and (2.3), we have 

functions. The extra factor l/J2”n! appearing in (2.1) will 
induce a symmetric coefftcient matrix for the hyperbolic i a*w 

%Fy= 
-A f a&zT)A,+,(u) 

?7=0 system forfn (see (3.4)). Setting 

- H,(au) exp( -a2u2), 

we have the following recurrence relations: 

dt7 (u) 
“= -u~@izT)lif,+,(u), 

du 

afd f) + ag,(Y, f) 
(2.2) 

x &(Y, f)---- 
C ay 

---&-LAY? t) 1 
= --Aa f J&k1(YJ) af,- ,(Y, 4 

?I=0 ay 
(2.3) 

S&i k h5 d 
ay 

fn- I(Y* t) ~nw. (2.10) 1 
(2.4) 

We now substitute (2.7)-(2.10) into Eq. (1.3) and equate the 
coefficient of A,(u) on the two sides of the equation. The 
result is a system of partial differential equations for the 

(2.5) fn(Y, t), which can be written in the form 

df%h) 
u-= -J(n+l)(n+2)Rn+,(u) 

du 

- (n + 1) B,(u). (2.6) 

From (2.1) and (2.5) we have 

x&Xjig,,f,~2-iaJS 

(2.11) 

Equations (2.11 ) can be further re-arranged to give 

af, _ 
at 

(2.9) 

(2.7) 
+dnlfn+, +dnofn+d+,jfn-, 

+&--2&z, (2.12) 
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where 

(2.13) 

(2.14) 

for n = 0, 1,2, . . . . Here the functions f- 1 and f- 2 have been 
set equal to 0. 

Setting 

g, = g”J2 with g = 1 + 2ia2, (2.17) 

we obtain that 

g $L(l +21a2)gF=Jg. 
n n 

Then Eqs. (2.12)-(2.16) become 

(2.18) 

+ 4-,,fn- I+ 4-s)fn--2. (2.19 

Further, using (2.12)-(2.16) and (2.19), we obtain 

312 1 ag -- 
xf gw 

(2.20 

dno= -,,-?i!! 
2g at2 

d,,. 2) = @‘CL - B) &=&lg, 

(2.21) 

(2.22) 

(2.23) 

forn=O, 1,2 ,.... 

3. SPECTRAL METHOD 

The spectral method of order N is the result of solving the 
first N + 1 of the Eqs. (2.19) for the N + 1 unknown func- 
tionsf,,f,, . . . . afterf,,, has been set equal to 0 in the last 

of these equations. The spectral approximation to w( y, u, t) 
will be given by 

N &(Y, t) 
WN(Y, u, f)= 1 ___ n=O @ii LbJ~ t, 

x H,(m) exp( -c(‘v*). (3.1) 

Let F denote an (N + 1 )-dimensional column vector defined 
by 

F=F(Y, t)’ [fo(Y, t),fdY, t), -?fN(Y? t)iT. (3.2) 

Then Eqs. (2.19) become 

?F_-&!!+sF 
at a ay ’ (3.3) 

where R and S are (N + 1) x (N + 1) matrices given by 

and 

s= 

R= , 

.....’ . 
. . 

do, do, 0 0 0 0 .‘. 

d 1(-l) d IO 4, 0 0 0 ..’ 

h-2, h-1, 40 4, 0 0 ... 

0 4-q he,) 4, 4, 0 ... 

+. ‘. . . . . : . . . 

(3.4) 

It can be seen from (3.4) that the matrix R is symmetric 
and thus has real eigenvalues. Specifically, we have the 
following result. 

THEOREM 1. The eigenvalues of R are the zeros of the 
Hermite polynomial H, + , (y ). 

ProoJ: Let (3iN + ,(y) = det(yZ - R). Expanding the deter- 
minant about its last row results in two terms, arising from 
the last two elements of that row, we then obtain 

~N+,(Y)=Y~N(Y)-~~N-,(y). (3.6) 

We shall prove that 

fly = 2-NH~(Y), N2 1. (3.7) 
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This can be verified for N= 1 and 2 by direct calculations. 
If (3.7) holds for N< L, we have, by using (3.6), that 

=2~LyH,(y)-2-LLHL~1(Y) 

= 2--(L+ “(ZyH,(y) - 2LH,- l(y)) 

=2-(L+1)HL+I(y). (3.8) 

This completes the proof of Theorem 1. 1 

Let y. > y , > . . . > y,,, be the zeros of the Hermite polyno- 
mial H,+,(y); and set 

.g,& [Hn(Yk)12 (3.9) 

We have the following results concerning the eigenvectors 
of R. 

THEOREM 2. (i) The eigenvector of R corresponding to 
the eigenvalue yk is 

Uk = CUOk, u,k, . . . . U,kjT, (3.10) 

with 

unk = & Hn(Yk). (3.11) 

(ii) The element of the inverse matrix of U= 
Iluo, u,, ‘.., U,] is of the form 

(up’),,= ’ - H,(Y,). pii 
(3.12) 

Proof. (i) If R Y = yk Y, then 

(3.13) 

for n = 0, 1, . . . . N, and y-i, yN+ I are set equal to 0. It is 
straightforward to show that the recurrence relation (3.13) 
is satisfied by y,, = U&, where U,,, is defined by (3.11). 

(ii) Since the corresponding eigenvectors Uj and Uj of 
two different eigenvalues yi and yj are mutually orthogonal, 
we have 

Theorem 2 is therefore complete. 

$ L Hn(~i) Hn(Yj) = Cjhg, n=O 2”d 

1 

(3.14) 

which implies that (U -‘),k = Hk(yn)/m. The proof of 

Let F= U-IF and s= U-'SU. From Theorem 2 we 
obtain that 

U-'RU=A -diag(y,, yi, . . . . yN). (3.15) 

If we premultiply (3.3) by U ~ ‘, we obtain 

(3.16) 

Since the function g is positive, Eq. (3.16) is a typical hyper- 
bolic system and can be solved by forward and backward 
space differences according to the signs of yk (0 d k d N). 
The boundary conditions for Fare, when N is odd, 

.$(- Y9 t)= wL,(Yj/U, t )  exp(yf), 

N-l 
j= 0, 1, . ..) - 

2 ’ 
(3.17) 

J( K t) = wdyj14 t) exp(yj), 

j= 
N+l 
-, . . . . N. 

2 
(3.18) 

If N is even, then yN,* = 0. In this case the system of 
Eqs. (3.16) for yN,,(y, t) needs no boundary condition 
because ajay does not appear. Hence in this case 

Tj(- K I)= wL(Yj/", t) exp($), 

j=o, 1, . ..) ;- 1, (3.19) 

Tj( K t) = w17(Yjl"3 t) expbj), 

j=;+l N. 3 ..., (3.20) 

To derive the above boundary conditions, we may write 
from (2.1) that 

N iL(YY t) w(y, Yjl4 t) = W,(Y, Yjl% t) = c - 
"=O qez 

xf,(Y, WnWw-7j). (3.21) 

From (2.17), together with A( + Y, t) = 0, we have 
g,( + Y, t) = 1. This and (3.21) yield that 

W( f Y, Yj/h t) zyj( k Y, t) exp( - y:). (3.22) 

When N is odd, yI > 0 when j < (N - 1)/2 and yj c 0 when 
ja(N+ 1)/2. From (1.4), (1.5), and (3.22), we choose 
the boundary conditions (3.17 )-( 3.18). The boundary 

\ conditions (3.19)-(3.20) are obtained in a similar way. I\ I 



4. NUMERICAL EXAMPLES 

Consider the test problem 

aw aw a(uw) azw 
at= -up+x+av" 
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The roots of the above polynomials, which in general 
cannot be found analytically for large N, are obtained 
numerically. They are 

(4.1) 

(4.2) 

(4.3) 

H, : 1.2247, 0, - 1.2247; (4.11) 

H,: 1.6507, 0.5246, -0.5246, - 1.6507; (4.12) 

H,: 2.0202,0.9586, 0, -0.9586, -2.0202; (4.13) 

H,: 2.6520, 1.6735, 0.8163, 0, -0.8163, 

- 1.6735, -2.6520; (4.14) 

H,: 3.1910, 2.2666, 1.4685, 0.7235, 0, 

-0.7235, -1.4685, -2.2666, -3.1910. (4.15) 

Using (4.6)-(4.15) we can find the corresponding matrices 
U and U-l. The finite-difference scheme for (3.16), for 
O<j< N, is w(,,v,O)=5(L+cosy)exp(-g), (4.4) 

with 

IT2 
q(t)=exp -4 rf2e-r-ie-2r--i 

[ ( 11 . 

The exact solution of (4.1)-(4.4) is 

w(v,v,I)=~[l+COS(~(J+(l-e-~)v))q(i)] 

V2 
xexp -- . 

( > 2 

J(y, t+At)=$.(y, t)-Eegll=(y, t) 
~1 AY 

x @(Y> t) -$CY - AY, t)) 

+ A@), (Y, t), if y,>O; (4.16) 

J(y, t+At)=z.(y, t)-@ 1’2 aAyg (Y,t) 

x @Y + AY, t) -~,CY, t)) 

(4.5) + At( (Yt t), if y,<O; (4.17) 

and 
Problem (4.1)-(4.4) has been chosen since it has an analytic 
solution and this allows us to compare our numerical results 
with the exact solution (4.5). It is noted that the analytic 
solution satisfies 0 d w( y, v, t) d 1 which indicates that the 
test problem (4.1)-(4.4) is more realistic than that given in 
[25], where the test problem does not lead to a positive 
semidefinite solution. 

In the following numerical calculations, several values of 
N (see (3.2) for N) are tested. We use N= 2, 3, 4, 6, and 8, 
respectively, which correspond to 3, 4, 5, 7, and 9 truncated 
terms in the series expansion (2.1 . The constant cc (see 
(2.1)) used in the calculations is l/ J 2. The Hermite polyno- 
mials H,, ,(y), for N = 2, 3, 4, 6, and 8, are 

J(Y, t+Af)=$(y, t)+At(sF)j(y, t), if yi=O. 

(4.18) 

0.9 
solid: Exact 
dashed: N=2 
dotted: N=3 

‘1 

0.6 

2 0.5 . . 

H,(y) = 8y3 - 12y, (4.6) 

H4(y) = 16y4 - 48y2 + 12, (4.7) 

H,(y) = 32y5 - 160~~ + 12Qy, (4.8) 

H,(y) = 128y’- 1344y5+ 3360~~ - 168Oy, (4.9 1 

H,(y) = 512~~ - 9216y’ + 48384~~ 

- 80640~~ + 30240~. 

0’ I 
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

FIG. 2. The variation of ~(0, II, I) with 0 <u 6 2 at t = 1. The numeri- 
cal results are obtained by using three and four truncated terms (i.e., N = 2 

(4.10) and 3). 
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v-axis 
0 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

FIG. 3. The variation of ~(0, v, t) with 0 <U < 2 at t = 3. The numeri- 
cal results are obtained by using 3 and 4 truncated terms (i.e., N= 2 and 3). 

Here At and Ay are steplengths in t and y directions, 
respectively. Equations (4.16) and (4.17) are solved with 
the boundary conditions (3.17)-(3.18) (if N is odd) or 
(3.19))(3.20) (if N is even). The stability restriction, i.e., 
Courant-Friedrichs-Lewy condition, 

d’ 
AYO 

max IyjI d 1, (4.19) 
<j<N 

must be satisfied. In the present calculations the mesh sizes 
used are dy = 0.02 and At = 0.001. Since the maximum 
eigenvalue used in our calculations is 3.191 (see (4.15)) the 
above CFL condition is satisfied. 

In order to compare numerical and theoretical solutions 
of (4.1)-(4.4) we plot ~(0, u, t) for 0 < v < 2 at different time 
levels. Figure 2 shows numerical results of ~(0, u, 1) 
obtained by the use of three and four truncated terms (i.e., 
N = 2 and N = 3 ). The theoretical solutions given by (4.5) 

o.55 I 

5 
2 0.3 
z 

0.25 i 

0.2 

0.15 

0.1 - 

0 05 - 
0 

solid: Exact 
dotted: N=3 
dashdot: N=4 

FIG. 4. The variation of ~(0, V, t) with 0 < v < 2 at t = 5. The numeri- 
cal results are obtained by using 4 and 5 truncated terms (i.e., N = 3 and 4). 

FIG. 5. The variation of \w,(O, u, 10) - ~~(0, U, lO)l for N = 3, 4, and 6. 

are also plotted in Fig. 2. It is observed that the agreement 
between the numerical and theoretical results is favourable. 
However, as t grows the agreement between the theoretical 
solution and the numerical result obtained by using three 
truncated terms (i.e., N = 2) breaks down. This can be seen 
from Fig. 3 which plots ~(0, u, 3), obtained by using N = 2 
and N = 3, respectively. Figure 3 suggests that N = 2 is too 
small to obtain accurate numerical solutions. 

Figure 4 gives the theoretical and numerical results of 
~(0, a, 5). The numerical results presented in Fig. 4 are 
obtained by using four and live truncated terms (i.e., N = 3 
and 4). It can be observed from Fig. 4 that the numerical 
solution with N = 3 and 4 at t = 5 compares very well with 
the theoretical one. As time t becomes sufficiently large the 
solution of problem (4.1)-(4.2) reaches a steady state, i.e., 

(4.20) 

1 1 

0.7 - 

0.6 - 

0.5 

0.4 
0 

time t 

1 2 3 4 5 6 7 8 9 10 

FIG. 6. The variation of k(t) with 0 < t f 10. 
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The spectral solutions approximate this steady state solu- 
tion very well, but it is difficult to plot them so that they are 
distinguishable from the exact solution. Instead, Fig. 5 
shows the numerical errors Iw(O, u, 10) - w,(O, u, lo)], with 
N= 3,4, and 6, which are observed to be of order 0( 10d4). 

In practice, we require, in particular, the so-called current 
to the wall k, defined as 

(SIT5 vw( Y, v, t) dv) 

k(f)=((1/2Y)i’,{,+” w(y,v, t)dvdy)’ (4’21) 

For problem (4.1)-(4.4), a direct calculation from (4.5) and 
(4.21) gives (see Fig. 6) 

il + (7$)(1 -e-v 4(f) \ 
k(z) = t 

x j: cos((rc/2)( 1 - e-‘)u) exp( - (u2/2)) do) 

1J71/2 + W77) 4(t) i 
x jz cos((rr/2)( 1 - e-‘)u) exp( - (u2/2)) do) 

(4.22) 

On the other hand, using 

6) [” H,(au) exp( - a2u2) dv 
JO 

n=O 

4 n>, 1, 
(4.23) 

and 

(ii) 3c 
s 

uH,(cw) exp( -a2u2) du 
0 

n =O, 

n= 1, (4.24) 
n 3 2, 

0.016 
_,.. 

.:--.---~~4---’ . . . . . . I . . . . . . .._.. 

0.014 
.’ 

,’ 

0.012 

I 0.01 g L P 0.008 
j 

I: : 
0.006 :, 
0.004 1, 

0: 0 : 
,“. 

o.Ml*- : 0: ,tk ,.y : 

iv 
o. ‘. (’ 

‘, time t 
0 *- 1” ’ 

0 1 2 3 4 5 6 7 8 9 10 

FIG. 7. The variation of l/c(r) - kN(t)l for N = 4, 6, and 8 

we obtain from (3.1) and (4.21) that 

k(t) = k,df) 

+c,“=, X,(Y, t) fL*Kw/= > 

Wylfl 

(4.25) 

Figure 7 shows the numerical errors (k(t) - kN( t )I for N = 4, 
6, and 8. It is observed that the calculated solutions of k are 
in good agreement with the theoretical results when larger 
values of N are employed. Physically, we also need to 
predict the long-time behavior of k( t). In other words, k( cc ) 
is of practical importance in the investigations. The present 
numerical calculation of k, suggests that k,(m) = 0.807, 
yielding a relative error with respect to k( a~)( = J2/n) of 

(4.26) 
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